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The effects of a constant magnetic field on electrically conducting liquid-metal flows
in a parallelepiped cavity are investigated using a spectral numerical method involv-
ing direct numerical solution of the Navier–Stokes and Ohm equations for three-
dimensional flows. Three horizontal Bridgman configurations are studied: buoyancy-
driven convection in a confined cavity and in a cavity where the top boundary is
a stress-free surface and thirdly, thermocapillary-driven flow in a cavity where the
upper boundary is subjected to effects of surface tension. The results of varying
the Hartmann number (Ha) are described for a cavity with Ax = L/H = 4 and
Ay = W/H = 1, where L is the length, W is the width and H is the height of the
cavity. In general, an increase in the strength of the applied magnetic field leads to
several fundamental changes in the properties of thermal convection. The convective
circulation progressively loses its intensity and when Ha reaches a certain critical
value, which is found to depend on the direction (longitudinal or vertical) of the ap-
plied magnetic field, decrease of the flow intensity takes on an asymptotic form with
important changes in the structure of the flow circulation. The flow structure may
be separated into three regions: the core flow, Hartmann layers which develop in the
immediate vicinity of the rigid horizontal boundaries or at the endwalls, and parallel
layers appearing in the vicinity of the sidewalls. The behaviour of the maxima of
velocity and of the overall flow circulation is found to depend on both the boundary
conditions used and the direction of the applied magnetic field. Furthermore, the
interaction of the electric current density with the applied magnetic field which leads
to the structural reorganization described above can also create more subtle flow
modifications, such as flow inversions which are observed mainly in the central region
of the cavity.

1. Introduction
In this paper we focus on the behaviour of the flow of an electrically conducting

liquid metal held in a differentially heated Bridgman boat and subjected to a constant
magnetic field. In such a configuration convection flow in the melt is basically driven
by two different sources: buoyancy and surface tension. Buoyancy convection arises
from the imposed density gradients and gravity whereas thermocapillary-driven flows
are the result of the presence of surface tension gradients at the free surface. Two
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different aspects contributed to our interest in this problem: first, practical applications
involving crystal growth depend on these types of convection; the second aspect is
more theoretical and is that variety of different flow structures may occur in this very
simple geometry, including the transition from steady laminar to turbulent flows.

In the absence of a magnetic field, it is well established from experimental (Hurle,
Jakeman & Johnson 1974; Carruthers 1977; Kuhl & Wilke 1990) and theoretical
(Gill 1974; Hart 1972, 1983; Laure & Roux 1987; Kuo & Korpela 1988; Wang et
al. 1990) studies, that the convective circulation in a metallic liquid heated from the
side exhibits a transition to oscillatory convection when the horizontal temperature
gradient exceeds a certain critical value. These time-dependent flows give rise to
fluctuations of the temperature field which, in turn, produce the oscillatory crystal
growth responsible for the microscopically non-uniform distribution of dopant in
the crystal. The origin of these time-dependent flows is not understood at present,
but previous numerical calculations showed their existence even for zero Prandtl
number, i.e. a situation in which the thermal field is fixed. This could indicate that
the instabilities in such a type of flow have a dynamical nature. The magnetic field
possesses many advantages, of which the principal one is its ability to penetrate solid
walls and interact with the liquid metal held within. The use of a constant magnetic
field in crystal growth can be justified by the tendency of the magnetic forces to inhibit
the fluid velocity throughout the melt domain. Consequently, a magnetic field will
tend to quench existing flow oscillations and thereby represents a promising method
for improving crystal quality. While some of these features have been confirmed
qualitatively in laboratory simulations (Müller 1993), quantitative results concerning
the behaviour of the velocity, as well as the pattern of motion, can only be obtained
through three-dimensional numerical simulations. Few numerical simulations have
been performed in this field. A review of the progress and prospects of the use of a
magnetic field in crystal growth can be found in a detailed paper by Series & Hurle
(1991).

Experimental investigations by Hurle et al. (1974) in a differentially heated cavity
of liquid gallium showed that the critical temperature difference for the appearance
of flow oscillations decreases as the aspect ratios (Ax and Ay) of the cavity increase.
Furthermore, it is seen that this critical temperature difference is sensitive to the
presence of a transverse magnetic field and increases linearly with the square of the
Hartmann number. Recent experiments by Pratte & Hart (1990) on liquid mercury
(Pr = 0.026) carried out in a variety of closed rigid-wall containers with aspect ratios
(length to width to height) of 4 × 1 × 1, 4 × 2 × 1 and 8 × 8 × 1, and subjected to
differential heating at the vertical endwalls, showed evidence of a stabilizing influence
of the sidewalls. In fact, for the 4 × 1 × 1 case, no time dependence was observed
up to a Grashof number equal to 1.69 × 105, while for 4 × 2 × 1 and 8 × 8 × 1
the instabilities appear at 4.23 × 104 and 2.22 × 104 respectively. Their results also
suggest that the dominant response near the onset of instability in the 4 × 1 × 1
and 4 × 2 × 1 cases consists of a standing wave. A similar stabilizing effect by the
sidewalls on fluid convection has recently been analysed by Hung & Andereck (1988,
1990) who reported a series of measurements of thermal oscillations in mercury held
in differentially heated boats with aspect ratios 4 × 1 × 1 and 4 × 2 × 1, and gave
respectively 1.5×105 and 3.9×104 as values of the Grashof number for the emergence
of a periodic state.

Three-dimensional numerical simulations of melt convection carried out by Baum-
gartl & Müller (1992) in a cylindrical geometry submitted to a constant magnetic
field show that only the models including the electric potential equation agree well
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with the experimental results. Experiments by Baumgartl, Hubert & Müller (1993)
in a cylindrical container (h/d = 1.9, the height h is 64 mm and d is the diameter)
filled with liquid gallium and submitted to a magnetic field B0 = 2 mT (Ha = 5.8)
show temperature fluctuations when the temperature difference is equal to 0.65 K,
corresponding to Gr = 2.13× 106 (the temperature difference for the transition from
steady to unsteady flows is 0.6 K). Numerical simulations of the melt flow held in
a geometry with similar characteristics (Gr = 2.903 × 106 and Ha = 5.8) show time
variation of the temperature fluctuations of a nearly sinusoidal form with typical am-
plitudes of about 4% of the mean values. For Ha > 20 (B0 > 7 mT), flow fluctuations
are suppressed and the resulting steady flow has essentially the same features as the
unsteady one: a single roll slightly inclined with respect to the cylinder axis with small
counter-rotating rolls, one near the top and one near the bottom. Furthermore, the
numerical simulations show evidence that the induced magnetic field, generated by
the liquid gallium flow across the field lines of the applied magnetic field, follows the
oscillatory convection and the temperature variation. Ozoe & Okada (1989) investi-
gated numerically three-dimensional buoyancy convection in a differentially heated
cubical box with three different orientations of magnetic field along the axes. These
authors have found that the magnetic field damps the flow most effectively when the
magnetic field is imposed perpendicular to the heated vertical wall. It is the least
effective when the magnetic field is horizontal and parallel to the heated vertical wall.

The onset of unsteady buoyancy-driven convection in a box has been analysed
numerically by Afrid & Zebib (1990) for a melt with zero Prandtl number. Their
results show that oscillations with a single frequency develop when Gr is 1.25 × 105

and 3 × 104 respectively for 4 × 1 × 1 and 4 × 2 × 1 confined cavities, while for
cavities with a free surface, oscillations with a single frequency set in when Gr reaches
105 and 2.5 × 104 respectively for 4 × 1 × 1 and 4 × 2 × 1 geometries. Also their
results show evidence of the stabilizing effects of rigid boundaries since the flow
is more stable when the width of the cavity is reduced from 2 to 1 or when the
top surface is rigid rather than free. In their computations Afrid & Zebib (1990)
imposed a reflection symmetry about the longitudinal vertical centreplane to reduce
the computation domain. This, however, restricts the possible solutions to symmetric
ones. Our experience with oscillatory flows in three-dimensional cavities indicates that
this symmetry is broken when periodic flows develop. Dupont et al. (1987) considered
an open cavity with the aspect ratios Ax = 4 and Ay = 2 for Pr = 0.069. They found
that for the steady state, the three-dimensional solution, which is a single stretched
convection cell, differs greatly from the two-dimensional solutions and that the value
of the critical Grashof number for the onset of unsteady flow is much larger than the
one in the two-dimensional studies.

Steady three-dimensional combined buoyancy and thermocapillary-driven convec-
tion has been analysed by Mundrane & Zebib (1993). Their numerical computations
were conducted in a cavity with aspect ratios Ax = 1.47, Ay = 1.4 and Pr = 8.4, and
showed that at low Reynolds number, Re = 349, the three-dimensional solution agrees
well with that obtained by a strictly two-dimensional model, whereas the solution at
Re = 23214 shows the occurrence of a bifurcation from a steady two-dimensional to
a steady three-dimensional flow. These authors, however, have not investigated the
effect of a magnetic field.

Previous work on thermal convection under the action of a constant magnetic field
has mainly been conducted for two-dimensional geometries (Ben Hadid, Henry &
Kaddeche 1997; Oreper & Szekely 1983, 1984; Motakef 1990; Kim, Adornato &
Brown 1988; Alboussière, Garandet & Moreau 1993; Kaddeche, Ben Hadid & Henry
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Figure 1. Model schematic of the parallelepipedic cavity. The left-hand and right-hand endwalls
are cooled and heated, respectively. Location of the main planes: (Lv)-plane at y = 0.5; (Tv)-plane
at x = 2 and (Lh)-plane at z = 0.

1994; Moreau & Ben Salah (1993, personal communication) and Bojarevics 1995).
As for three-dimensional thermal convection, little is known about hydrodynamic
aspects of the melt in the presence of a magnetic field.

In the present work a numerical approach is used to study the three-dimensional
flow under the action of a constant magnetic field in a 4× 1× 1 cavity with constant
horizontal temperature gradient. The mathematical model constructed in §2 is based
on the velocity–pressure equations with Ohm’s law for the current density and the
equation for charge conservation. The numerical model presented in §3 is based on
the splitting method for time discretization and on the variational spectral method for
space discretization. The effects of varying the Hartmann number, the orientation of
the magnetic field and the dynamical boundary conditions for the three-dimensional
model are discussed in §4. We consider two orientations of the magnetic field: the
first one where the magnetic field is applied vertically in the positive z-direction is
denoted the Bz case, and the second, where it is applied longitudinally in the positive
x-direction is denoted the Bx case.

2. Mathematical model
We consider a parallelepiped cavity of aspect ratios Ax = L/H = 4 and Ay =

W/H = 1 (where H is the height, W the width and L the length of the cavity,
see figure 1) filled with electrically conducting liquid metal with a negligible electric
charge density and submitted to a constant magnetic field. The top surface can be
rigid, free or subject to a surface tension gradient. Owing to the temperature difference
between the endwalls a horizontal temperature gradient forms throughout the cavity
and generates laminar convective motion.

The basic equations used in the simulations of the melt flow are the Navier–
Stokes equations including the Lorentz force, using the Boussinesq approximation
for buoyancy since the metallic liquid is considered incompressible. The surface
tension on the free surface is a linear function of temperature and is given by
σ = σ0[1−γ(T−T0)] where γ = −(1/σ0)(∂σ/∂T ). The three-dimensional conservation
equations of momentum are made dimensionless using H , H2/ν, Uref = ν/H and
∆T/Ax as scales for length, time, velocity and temperature respectively, where ν is
the kinematic viscosity and ∆T = Th − Tc is the difference of temperature between
the vertical endwalls (Th is imposed at the hot right endwall and Tc at the cold left
endwall). Using these non-dimensionalizations, the governing equations in the melt



Convection under constant magnetic field. Part 2. Three-dimensional flow 61

may be written as

∇ · v = 0, (2.1)

∂v

∂t
+ (v · ∇)v = −∇p+ ∇2v + Grθez + Ha2J × eB, (2.2)

where eB = B/|B|, v is the dimensionless velocity field (v = (u, v, w)), p denotes
the dimensionless pressure and θ is the dimensionless temperature defined as θ =
Ax(T −Tc)/∆T . In the present study we set the Prandtl number equal to zero (highly
thermally conducting fluid). Thus the temperature field is fixed, independent of fluid
motion and has a linear variation given by θ = x. The magnetic flux density vector
B in the Lorentz force J × B is the sum of the flux densities of the applied magnetic
field (B0) and the induced magnetic field b such that B = B0 + b. In general, for
metallic liquid b is much smaller than B0, thus we assume that b is negligible and
B = B0. The electric current density, J , which is normalized by σeUref |B0|, where σe
is the electric conductivity of the melt, is given by Ohm’s Law for a moving fluid:

J = E + v × eB (2.3)

where E is the dimensionless electric field. Here, since all the melt flows studied
are steady, the electric field can be written as the gradient of an electric potential
(E = −∇φ). The equation of continuity for electric current density gives

∇ · J = 0. (2.4)

Equations (2.3) and (2.4) give

∇2φ = eB · (∇× v), (2.5)

where φ is normalized by H Uref |B0|. The boundary conditions associated with the
above equations are at all rigid walls

u = v = w = 0, (2.6)

and for the free surface case on z = 1 we have

w =
∂v

∂z
=
∂u

∂z
+ Re

∂θ

∂x
= 0. (2.7)

Insulating conditions, J · n = 0, are adopted for the electric current density J at all
boundaries, where n denotes the normal to the boundary. With such a condition the
value of the potential is not unique and needs thus to be fixed at one point of the
cavity.

The dimensionless parameters appearing in equations (2.1)–(2.7), are the Grashof
number Gr = gβ∆TH4/Lν2, the Reynolds–Marangoni number (called Reynolds
number in the following) Re = (−∂σ/∂T )∆TH2/Lρν2 and the Hartmann number
Ha = |B0|H(σe/ρν)

1/2, where β is the coefficient of volumetric expansion, g the gravity
constant and ρ the fluid density.

3. Numerical procedure
3.1. Time discretization

Time discretization of the governing equations (2.1)–(2.5) is carried out using a high-
order splitting algorithm for mixed stiffly stable schemes (Karniadakis, Israeli &
Orszag 1991). From here on N (vn) = 0.5[vn · ∇vn +∇ · (vnvn)] represents the nonlinear
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contribution written in skew-symmetric form for aliasing control. First, considering
the nonlinear term, we obtain for the velocity

vn+1/3 −
J−1∑
q=0

αqv
n−q = ∆t

{
J−1∑
q=0

βq[−N (vn−q)] + Grθez + Ha2J × eB

}
, (3.1)

where αq , βq are implicit/explicit weight coefficients for stiffly stable schemes of order
J (J = 2). The next substep incorporates the pressure equation and enforces the
incompressibility constraint:

vn+2/3 − vn+1/3 = −∆t∇pn+1, (3.2)

∇ · vn+2/3 = 0. (3.3)

Finally, the last substep includes the viscous correction and the imposition of the
boundary conditions, i.e.

γ0v
n+1 − vn+2/3 = ∆t∇2vn+1, (3.4)

where γ0 is a weight coefficient of the backwards differentiation scheme employed
(Karniadakis et al. 1991). This fractional scheme is implemented by solving the
pressure equation in the form

∇2pn+1 = ∇ ·
(
vn+1/3

∆t

)
. (3.5)

The consistent high-order pressure boundary condition associated with the pressure
equation is derived from the equations of motion in which the linear term is written
as ∇2v = ∇(∇ · v)− ∇× ∇× v. This gives

∂p

∂n
= n ·

(
−

J−1∑
q=0

βq[N (vn−q) + ∇× (∇× vn−q)] + Grθez + Ha2J × eB

)
, (3.6)

where n denotes the normal to the boundary Γ .

3.2. Spatial discretization and accuracy

The spatial discretization of the above system of equations is obtained using a spectral-
element methodology (Patera 1984). More specifically, in the standard spectral-element
discretization, the unknowns and data are expressed as tensorial products using
Lagrange polynomial interpolants. The final system of discrete equations is then
obtained via a Galerkin variational method. The code used here has been extensively
tested in the case of steady and unsteady natural convection in two-dimensional
rectangular cavities and the results have been compared with published data (Ben
Hadid & Roux 1990a, b, 1992; Roux 1990). Further extensive verifications for the
convective flow in a three-dimensional confined cavity with aspect ratios 2 × 1 × 1
(respectively for the x-, y- and z-directions) and Pr = 0 have been performed by
comparisons with a second numerical code (Carrière & Jeandel 1991) based on a
finite-element method which used a highly refined mesh (67 × 33 × 33). The two
codes produce quantitatively comparable results and give similar behaviours when
the Grashof number is increased up to Gr = 2.5×105. In addition the transition from
steady to unsteady flows is obtained in the same range of Grashof number with a
good agreement for the characteristics of the unsteady flows.

The cavity is discretized using the Chebyshev–Gauss–Lobatto points distribution
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27× 15× 15 31× 15× 17 33× 15× 19
Re umax vmax wmax umax vmax wmax umax vmax wmax

3× 103 393.90 86.783 230.07 393.41 92.241 224.71 393.64 96.927 226.62
5× 103 568.77 141.001 334.93 570.06 128.41 342.25 569.34 128.38 340.52

Table 1. Tests of numerical accuracy for the thermocapillary case

Grid umax vmax wmax
27× 15× 15 2.802× 10−2 5.768× 10−3 2.730× 10−2

35× 17× 17 2.833× 10−2 6.012× 10−3 2.722× 10−2

39× 17× 19 2.820× 10−2 5.848× 10−3 2.754× 10−2

Table 2. Tests of numerical accuracy for the confined cavity with magnetic field
(Gr = 104 and Ha = 100)

with typically 27 × 15 × 15 (respectively for the x-, y- and z-directions) mesh points
for the confined cavity. For the thermocapillary case most of the simulations have
been done with 31 × 15 × 17 mesh points. To ensure that the solutions are accurate
and that the phenomena are not spurious artifacts of poorly resolved grids, grid
sensitivity studies have been conducted for the thermocapillary case for two values of
the Reynolds number, Re = 3 × 103 and 5 × 103, for which the flow is found to be
steady. The results can be found in table 1 which gives the maxima of the velocity
obtained on the collocation points for three different meshes.

When the grid is refined from 27 × 15 × 15 to 31 × 15 × 17 the maxima of the
main velocity components agree within 2.14% for the higher of the investigated
Reynolds numbers, Re = 5× 103, and within 2.4% for Re = 3× 103. The results also
show clearly that for Re = 5 × 103 an increase of the number of grid points from
31×15×17 to 33×15×19 leads to 0.51% and 0.22% variations, respectively, for the
maxima of the vertical and horizontal component of the velocity. These variations
are 0.84% and 0.06% for Re = 3× 103. However for v, which is the smallest velocity
component in the flow, when changing the grid from 31 × 15 × 17 to 33 × 15 × 19
the variation is about 5% for Re = 3 × 103, but it is only 0.023% for Re = 5 × 103.
Note that the value of the maximum of the velocity is generally underestimated if
it is not on the collocation points, so that a small change in the number of grid
points may then produce a relatively large variation on this value. This explains
the small discrepancies observed for the v-component of the velocity. Therefore, the
31× 15× 17 grid is considered sufficiently fine to resolve the flow adequately for the
thermocapillary flow.

The effect of the grid has also been investigated for the case with a magnetic field
by comparing the results obtained for the confined cavity (Gr = 104 and Ha = 100)
and different grids. The details of the grid influence on the maximum values of the
velocities are given in table 2. This table shows that the maximum variations of umax,
vmax and wmax with respect to the grid change are less than 1.1%, 4.5% and 1.2%
respectively. Thus, a satisfactory accuracy can be reached with the lowest grid (i.e.
with 27× 15× 15 points) in the case of the confined cavity with a magnetic field.
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(a)

(b)

Figure 2. Steady flow solutions represented by a single rotating cell, in a confined cavity without
magnetic field (Ha = 0). Velocity vectors projected on the (Lv)-plane for two Grashof numbers:
(a) Gr = 104 and (b) Gr = 4× 104.

4. Numerical results
This paper focuses on the changes in the characteristics of the liquid-metal flow

as the Hartmann number is increased. We also want to illustrate the sensitivity of
the results to changes in the upper dynamical boundary condition by considering
three cases for which the upper boundary is a rigid wall, stress free or subject to a
surface tension gradient. The Hartmann number varies from zero to 200 and only
the results for two magnetic field orientations, namely, the x- and z-directions, will
be discussed here. In the present study we set the Grashof number equal to 104

for the buoyancy-driven flow and the Reynolds number equal to 2 × 103 for the
thermocapillary-driven flow. These values being much lower than the critical values
for the onset of the oscillatory flow, the expected flows will be steady.

The symmetries of the original buoyancy-induced flow in differentially heated
parallelepiped cavities in the confined case are a reflection symmetry with respect
to the (Lv)-plane (longitudinal vertical centreplane) and a reflection symmetry with
respect to the (Th)-line (transverse horizontal centreline, at the intersection of the (Tv)-
plane (transverse vertical centreplane) and of the (Lh)-plane (longitudinal horizontal
centreplane)). The combination of these two symmetries gives a further symmetry
with respect to the centrepoint of the cavity. These different centreplanes which will
be used for graphical representation of the results are shown in figure 1. If we consider
a free surface, with or without surface tension effects, the upper and lower boundary
conditions are different, and only the symmetry with respect to the (Lv)-plane holds.
These symmetries are usually broken as the flow becomes unsteady with increasing
Gr (for example through a Hopf bifurcation). Here, since we study steady flows which
will be reduced in intensity by the application of a magnetic field, no such symmetry
breaking is expected and the original symmetries will be maintained

4.1. Confined cavity

The three-dimensional steady flows in a parallelepiped confined cavity are illustrated
by means of plots of the velocity vectors in the (Lv)-plane for two Grashof numbers
(Gr = 104 and 4× 104). In figure 2 we can see that the three-dimensional flow differs
noticeably from its two-dimensional counterpart. In the range of Grashof numbers
considered, Gr 6 4 × 104, the three-dimensional calculations exhibit a single large
convective circulation in the plane of symmetry (Lv-plane), whereas in the two-
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(a) (b)

Figure 3. Steady flow solutions in a confined cavity without magnetic field (Ha = 0). Velocity
vectors projected on a plane located at x = 3.75 for two Grashof numbers: (a) Gr = 104 and
(b) Gr = 4× 104.

dimensional model, a steady bifurcation leads to the appearance of a multi-cellular
flow for Gr around 2 × 104, and is followed by the onset of oscillations at Gr about
2.5 × 104 (Roux 1990). Note that even at a moderate value of the Grashof number
(Gr = 104), the calculated solution captures three-dimensional flow structures with
transverse variations in velocity profiles. The three-dimensional character of the flow
is particularly strong near the endwalls, as shown in figure 3.

In order to characterize the effects of a constant magnetic field applied vertically
(the Bz case) in a three-dimensional geometry, we plot in figure 4 the velocity vectors
in the (Tv)- and (Lh)-planes for Gr = 104 and Ha = 100. A strong magnetic field
has two important effects: a large reduction of the magnitude of the velocity and a
dramatic modification of the structure of the flow. From the results it appears that
when Ha is increased from zero to Ha = 10, the shape of the initial velocity profiles
due to pure buoyancy convection (i.e. Ha = 0) changes slightly. When Ha > 10, two
symmetrical maxima of velocity become apparent. When the value of Ha increases
further, these maxima become peaks which are the dominant features of the velocity
profiles, and are shifted towards the vertical sidewalls (figure 4). At the same time,
in the vicinity of these walls, the velocity gradients become larger and give rise
to boundary layers. These results in the (Tv)-plane compare well with the fully
established bidimensional results calculated in such transverse planes (R. Moreau &
N. Ben Salah 1993, personal communication; Bojarevics 1995). From figure 4 it is
clear that the magnetic field induces important changes in the horizontal velocity
profiles as well as in the vertical velocity profiles. However, in the vertical velocity
profiles the peaks are less pronounced. This effect may be due to the fact that in the
regions near the endwalls there is no direct damping of the flow since the velocity is
parallel to the magnetic field lines. Inspection of figure 4 also reveals that the structure
of the flow remains symmetrical with respect to the (Lv)-plane. As Ha is increased,
the flow becomes progressively more independent of x in the central part of the
cavity and antisymmetric with respect to the (Lh)- and (Tv)-planes. Note that, in the
core region, the horizontal velocity profile displays a linear variation with respect to
the vertical coordinate (z-shaped profile). Furthermore, for large Hartmann number
(Ha = 100), examination of the flow structure in the (Lv)-plane reveals the existence
of two secondary recirculation zones inside the global circulation in the vicinity of
the endwalls. These last two features have been already observed in two-dimensional
simulations (Ben Hadid et al. 1997).

It must be noted that the general behaviour of the convective flow development was
not found in the two-dimensional simulation and is a reflection of a specifically three-
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(a)

(b)

Figure 4. Flow solutions in the confined cavity for the Bz case for Gr = 104 and Ha = 100.
Velocity vectors in the (Tv)-plane (a) and in the (Lh)-plane (b).

dimensional mechanism of interaction between the magnetic field and the electric
current induced in the melt moving in a magnetic field. Some insight into the effects
of the electric current can be obtained in a qualitative manner from the plots of the
electric potential φ and the electric current density vector J displayed respectively
in figures 5 and 6. The overall mechanism generating the electric current in such
configurations may be viewed as follows. Since B is vertical, the directly induced
electric current (v × B) due to the motion of the fluid in any plane of constant x is
horizontal, going in opposite directions in the lower and upper parts. As the walls
are electrically insulating, conservation of current makes the current lines closed, and
hence vertical currents appear along the vertical sidewalls. These currents are created
by vertical gradients of electric potential, but this potential also creates horizontal
currents near the corners which compete with the directly induced current. The
resulting total current forms loops in the sense dictated by (v × B), away from the
corners. There is a counter-rotating current circulation in the corners due to the
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electric potential current which is dominant near the upper and lower walls where
(v × B) is zero (rigid wall) (see figure 6). The resulting current is responsible for the
creation of electromagnetic forces which strongly decelerate the motion, except in
the parallel layers along the lateral walls where the current is nearly parallel to the
applied magnetic field. The appearance of overvelocities in these layers is thus a direct
consequence of the structure of the electric current. Furthermore, from figure 6 it is
clear that in the central region the electric potential is nearly uniform, i.e. that E is
small, and the dominant contribution to the electric current J is then from the direct
term v×B, which corresponds to the electric model used in two-dimensional situations.
This explains why, in such regions, behaviour similar to that of the two-dimensional
case is found.

Additional information may be obtained from figure 7 where the maxima of the
absolute values of the horizontal and vertical velocities, denoted respectively by umax
and wmax, are plotted. In this figure the maxima of these two components in the
(Lv)-plane, denoted by umil and wmil respectively, are also given. These curves reveal
the change in the dynamics of the flow as the Hartmann number is increased, and,
for Ha > 10, the maxima are found to vary as

umax ∼ Ha−1 (4.1a)

and

wmax ∼ Ha−1, (4.1b)

whereas the dependence in the (Lv)-plane is close to that of the two-dimensional
simulations (Ben Hadid et al. 1997) with

umil ∼ Ha−2 (4.2a)

and

wmil ∼ Ha−3/2. (4.2b)

The possible explanation of the dependence of umax and wmax on Ha−1 may be
obtained from the following analysis: in the core region the only contribution to the
electric current, Jc, is from v × B and since uc ∼ Ha−2 thus Jc ∼ Ha−2. In the core
region the electric current in a transverse section circulates horizontally over a layer
of thickness 1/2 while it circulates vertically along the lateral walls over the parallel

layer of thickness δ‖ ∼ Ha−1/2. Using the conservation of the electric current we

obtain for the electric current in the parallel layer Jp ∼ Ha−3/2. Moreover, the only
contribution to the electric current, Jp, is from the vertical electric potential gradient,
therefore Jp ∼ ∆φ/∆z, and since the relevant vertical length scale for the potential

is 1, the maximum difference in the electric potential is ∆φ ∼ Ha−3/2. Finally, in
the parallel layer the horizontal electric potential gradient (i.e. ∆φ/δ‖ ∼ Ha−1) is

balanced by v × B which gives a Ha−1 variation for u in the parallel layer where the
velocity reaches its maximum value. The conservation of the flow rate between the
longitudinal circulation and the vertical circulation along the endwalls gives the same
Ha−1 variation for wmaxbecause both circulations occur in parallel layers of thickness
Ha−1/2.

We next examine the interaction between the flow and the magnetic field when it is
applied horizontally, in the x-direction. In figure 8, where the velocity vectors in the
(Tv)- and (Lh)-planes are plotted, it is clear that the horizontal magnetic field induces
changes in the structure of the flow as its strength is increased. It appears that the
progressive structural changes in the horizontal velocity are, in a qualitative sense,
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Figure 5. The electric potential field in the (Tv)-plane (viewed from the right) for the confined
cavity and the Bz case. Gr = 104 and Ha = 200.

Figure 10. The electric potential field in a plane located at x = 0.5 (viewed from the right) for the
confined cavity and the Bx case. Gr = 104 and Ha = 200.
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Figure 6. The electric current density vectors projected on the (Tv)-plane (viewed from the right)
for the confined cavity and the Bz case. Gr = 104 and Ha = 200.
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Figure 7. Plots of the maxima of the two main components of the velocity for the confined cavity
and the Bz case for various Hartmann numbers. umax and wmax correspond to the maxima in the
whole cavity, umil and wmil correspond to the maxima in the (Lv)-plane.

similar to those observed in the Bz case, but the value of Ha at which they become
significant is larger. Low values (Ha 6 50) have little influence on the configuration
of the horizontal velocity, whereas when it becomes large enough (Ha = 200) we
observe two maxima near the lateral walls in the lower and upper parts of the
profiles. However, the size of these peaks corresponds to that obtained for much
lower values of Ha in the Bz case. Furthermore, examination of the velocity vectors in
the (Lh)-plane shows evidence of important modification in the profile of the vertical



70 H. Ben Hadid and D. Henry

(a)

(b)

Figure 8. Flow solutions in the confined cavity for the Bx case for Gr = 104 and Ha = 200.
Velocity vectors in the (Tv)-plane (a) and in the (Lh)-plane (b).

velocity and reveals that the vertical velocity decreases faster in the core region. Thus,
two layers which are symmetrical with respect to the (Lv)-plane are created parallel to
the vertical lateral walls and, unlike the Bz case, the upward and downward vertical
velocities in the parallel layers extend into the central region of the cavity. In fact, in
the Bx case, the main effects relate to the vertical velocity, which is perpendicular to
B, whereas in the Bz case it was the horizontal velocity which showed the important
changes.

When B is in the x-direction, the directly induced electric current comes principally
from interaction with the vertical velocity component, mainly near the side- and
endwalls. This current is transverse, in the direction of positive y in the right-hand
side of the cavity, and in the opposite direction in the left-hand side. The conservation
of the current still occurs mainly in planes of constant x, with the creation of two
superposed counter-rotating loops (see figure 9a), with opposite senses of rotation
in the right- and left-hand parts of the cavity. The electric potential responsible
for this is plotted in figure 10 (see page 68): the potential is antisymmetric with
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(a)

(b)

Figure 9. The electric current density vectors projected on a plane located at x = 0.5 (viewed from
the right) (a) and on the (Lh)-plane (b), for the confined cavity and the Bx case. Gr = 104 and
Ha = 200.

respect to the (Lv)-plane and gives gradients in planes of constant x tending to create
recirculation zones of current; it is also of opposite signs in the right- and left-hand
parts of the cavity (antisymmetry with respect to the Th-axis), which generates smaller
longitudinal gradients responsible for a longitudinal current circulation (its maximum
is two-times smaller than the transverse current recirculation) which is clearly visible
in the (Lh)-plane (figure 9b). The electric potential in planes of constant z is in fact
roughly similar to that obtained in planes of constant x in the Bz case.

An understanding of the action of the magnetic field upon the melt flow through
the electric current density is necessary to explain the unexpected flow structure mod-
ifications such as the reverse flow observed in the core region in a small area around
the centre of the (Tv)-plane (see figure 8a). It is clear that the currents act directly
through the Lorentz force (J × B) to reduce the vertical velocity component around
mid-height in the cavity (except near the lateral walls where the current is no longer
horizontal and where relatively large velocities are obtained). In contrast, the origin
of the structural change mentioned above, and its relationship with the electromag-
netic forces, may be found from the analysis of the pressure field changes induced
by the electric current. The electric current loops observed in planes of constant
x, perpendicular to the applied magnetic field, generate concentric electromagnetic
forces, which are either convergent or divergent depending on the sense of circulation,
and give rise to local overpressures and underpressures respectively. For example in
the plane x = 0.5 (figure 9a), the upper loop generates convergent forces and a
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Figure 11. Plots of the maxima of the two main components of the velocity for the confined cavity
and the Bx case for various Hartmann numbers. umax and wmax correspond to the maxima in the
whole cavity, umil and wmil correspond to the maxima in the (Lv)-plane.

local overpressure, whereas the lower loop generates divergent forces and therefore a
local pressure decrease. Thus, in addition to the pressure gradient of pure buoyancy
convection (producing the longitudinal circulation of the flow), the electric current
circulation induces new longitudinal pressure gradients which may be responsible for
the appearance of the observed reverse flow.

As a starting point for further discussion of the flow behaviour, the maxima of
the velocity over the whole cavity and in the (Lv)-plane are plotted in figure 11. The
effect of the reduction of flow intensity with increasing Hartmann number is small for
Ha 6 20, but becomes remarkably important when the Hartmann number is large.
It is clear from the figure that relations (4.1a), (4.1b) also holds for large Hartmann
numbers, that is Ha > 50. In contrast to the Bz case, it is now wmil which decreases in
proportion to Ha−2, whereas umil decreases roughly as Ha−1. It is not surprising that
the asymptotic character is reached at higher values of Ha compared to the Bz case
since the relevant length scale is the distance between the Hartmann walls which is
increased by a factor of four.

4.2. Cavity with a free surface (Re = 0)

In the absence of a magnetic field a steady-state solution is obtained for Gr = 104.
In such a configuration, the flow pattern consists of a long circulation cell filling
the whole cavity, and the maximum of the velocity is reached at the surface in the
region of the cold wall. The flow has a three-dimensional character and transverse
velocities are present, particularly near the endwalls. Furthermore, examination of the
transverse surface velocity profile reveals that its shape evolves progressively along x
from a U-shape near the hot wall to a Poiseuille-like shape. Note that this unicellular
flow circulation is found for all the Grashof numbers studied, Gr < 4 × 104, for
which the flow was found to be steady. In contrast, in the two-dimensional studies the
convection cell splits into two cells which begin to oscillate with a single frequency
at Gr about 13 750. This critical Grashof number rises slightly to 14 750 when the
Prandtl number is increased from zero to 0.015 (Ben Hadid & Roux 1992).
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(a)

(b)

Figure 12. Flow solutions for the free-surface cavity and the Bz case for Gr = 104 and Ha = 140.
Velocity vectors in the (Tv)-plane (a) and at the free surface (b).

Upon the imposition of the vertical magnetic field, the absolute values of the velocity
are reduced and the circulation tends to separate into two symmetrical lateral layers.
The departure from the initial flow structure appears, as in the confined cavity case,
for Ha > 10, which suggests that at this value of Ha the damping force contributes
significantly to the modification of the melt flow. It is interesting to observe in figure
12(a) that the maxima of the velocity are located near the free surface and that they
have shifted progressively toward the sidewalls as Ha is increased. This transverse
variation is also visible over the whole (Tv)-plane, and the most vigorous flow activity
in the x-direction is in fact limited to a small region in the immediate vicinity of
the lateral walls which is the parallel layer. In figure 12(a), the plots of the velocity
vectors given for Ha = 140 show all the characteristics of the large-Ha solution and
reveal how the flow in the parallel layers matches the core flow. A consequence of the
strong damping effect of the magnetic field is the appearance of a reverse flow in the
upper part of the core over a small region which increases in size as Ha increases; at
Ha = 140, it roughly covers the core region. The surface velocity vectors displayed in
figure 12(b) for Ha = 140 give an example of the structure of the flow at the surface.
From the figure it is clear that the reverse flow which extends over almost the whole
length of the cavity appears to constrain the upstream flow to go towards the lateral
walls and thence to feed the parallel layers. The modification of the flow structure in
the (Lh)-plane looks similar to that obtained in the confined cavity case.

The equipotential lines and electric current density vectors, which give further
insight into the damping effects of the magnetic forces, have globally a similar
structure to those obtained in the confined cavity case. The electric potential field is
antisymmetric with respect to the (Lv)-plane, but, in contrast with the confined cavity
case, it does not take on the antisymmetry with respect to the (Lh)-plane as Ha is
increased. Furthermore, unlike the confined cavity case, the electric potential in the
central region is not uniform. The equipotential lines are nearly straight, parallel to
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Figure 13. Flow solutions for the free-surface cavity and the Bx case. Velocity vectors in the
(Tv)-plane for Gr = 104 and Ha = 200.

the imposed magnetic field, which results in a new contribution to the magnetic force,
enhancing the damping effect in the upper part and decreasing it in the lower part.
In the centre of the upper part, this effect produces an electromagnetic force which
ultimately, as Ha increases, overcomes the driving pressure force and induces a reverse
flow. An important fact is that in the centre part, while the directly induced electric
current depends on the local velocity, in contrast, the potential current due to E
could be connected to the strong potential created in the parallel layers and so to the
vorticity in these zones. Since this vorticity decreases less than the velocity in the core
region as Ha is increased, E can give currents tending to reverse the flow in this core
region. Finally, owing to the free-surface dynamical boundary condition, the electric
current density field does not display at the upper corners the small counter-rotating
loops of current which were observed in the confined cavity case.

We next examine the effect of the magnetic field when it is applied horizontally in
the positive x-direction. Modifications in the flow structure arise from increasing the
intensity of the magnetic field. The evolution of the structure of the vertical velocity is
qualitatively similar to that observed in the confined cavity for the Bx case. However,
from figure 13 we can see that the behaviour of the horizontal velocity is somewhat
different from that observed in a confined cavity. In fact, the overvelocities are small
and only apparent in the lower part of the cavity, whereas in the layer near the top
surface the velocity has a nearly uniform profile in the y-direction.

The structures of the electric potential field and of the electric current density
vector field, which are responsible for the modifications of the flow behaviour when
Ha is increased, are roughly similar to those obtained for the confined cavity, except
that no symmetry holds with respect to the (Lh)-plane because of the presence of
the free surface. As already observed in the confined cavity case, two superposed
counter-rotating loops are found in planes of constant x, which generate pressure
effects and hence small longitudinal reverse flows which are clearly visible in the plot
of the velocity vectors shown in figure 13.

In an attempt to give quantitative results indicating the action of the magnetic field,
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Figure 14. Plots of the maxima of the two main components of the velocity (umax and wmax), for
the free-surface cavity case. The data are plotted as a function of the Hartmann number for the Bz
and the Bx cases.

we plot the maxima of the velocity in figure 14. Examination of this figure shows
qualitative behaviour similar to that observed in the confined cavity and reveals that
both the maxima of the velocities now behave as Ha−1 above about Ha = 10 in the
Bz case, while in the Bx case this occurs at about Ha = 50 for umax and earlier at
about Ha = 20 for wmax.

4.3. Thermocapillary-driven flow (Re 6= 0, Gr = 0)

Three-dimensional calculations performed up to Re = 5 × 103 show steady-state
solutions which, as previously found in two-dimensional calculations (Ben Hadid &
Roux 1992), present a concentrated circulation located in the region near the cold wall.
The flow structure for three Re values is presented in figure 15 as a plot of the velocity
vectors in the (Tv)-plane. At these values of the Reynolds number a three-dimensional
character has already developed but the flow structure in the (Lv)-plane is qualitatively
similar to that obtained using the two-dimensional model. Figure 16 compares the
horizontal velocity profiles on the surface (at the intersection of the free surface and
the Lv-plane) obtained with the two-dimensional and the three-dimensional solutions
at various values of Re, namely 2 × 103, 3 × 103 and 5 × 103. From this figure it is
clear that the surface velocity profiles of the three-dimensional flow have the usual
features of thermocapillary-driven flows in rectangular cavities and values comparable
with the two-dimensional case except in the region near the cold wall. Note that in
two-dimensional calculations, at Re = 5× 103, the curve exhibits two maxima which
indicates that a two-cell configuration would already be present. However, the curve
arising from the three-dimensional solution shows only one maximum and thus the
overall structure of the flow must be different. Three-dimensional effects are relatively
small at the top surface, but in the immediate vicinity of the endwalls the flow field
displays strong three-dimensional behaviour with recirculations in the return flow in
the lower part of the cavity. Another interesting feature shown in figure 15 is the
fact that, for large Re, the surface velocity does not reach a maximum on the axis
of symmetry (Lv-plane) but rather away from it. This feature may be related to
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(a)

(b)

(c)

Figure 15. Thermocapillary steady flow solutions without a magnetic field (Ha = 0). The velocity
vectors are plotted in the (Tv)-plane for three Reynolds numbers: (a) Re = 5×102; (b) Re = 2×103

and (c) Re = 5× 103.
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Figure 16. Comparison of the horizontal surface velocity profiles along the x-direction as a function
of the Reynolds number (Re = 2× 103, 3× 103 and 5× 103) without a magnetic field (Ha = 0). The
results are given for the two-dimensional case (filled symbols) and for the three-dimensional case in
the (Lv)-plane (open symbols).

the structure of the flow in the lower part of the cavity. In fact, the flow is driven
by a constant surface tension force on the whole upper surface. But, as the return
longitudinal flow in the lower part of the cavity is rather concentrated in the core, this
will give stronger vertical shear gradients and so a greater reduction of the velocity
in the centre.

In the following, we present the results of a series of three-dimensional simulations
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Figure 17. Velocity vectors in the (Tv)-plane for the thermocapillary flow and the Bz case at
Re = 2× 103 and Ha = 140.

for the Bz case. The main features of the results are that, when the value of Ha is
increased, the overall fluid circulation becomes less intense with progressive modifica-
tion of the structure of the melt flow. In figure 17 the velocity vectors in the (Tv)-plane
are displayed for Ha = 140. As shown in this figure, there is much more activity near
the free surface, with overvelocity peaks along the lateral walls. This overvelocity is
already apparent at Ha = 20. A further increase of Ha leads to additional changes in
the flow structure. Owing to the progressive weakening of the cold-wall eddy as Ha
is increased, the overall circulation pattern becomes increasingly invariant along x
and antisymmetric with respect to the (Tv)-plane, and the centre of circulation moves
towards the free surface. Furthermore, the viscous layer induced by the relatively large
surface velocity, which is observed in the absence of a magnetic field, is also found,
but has a much smaller thickness when Ha is increased. The structure of the vertical
velocity in the (Lh)-plane bears a resemblance to that observed in the confined and
free surface cases.

The electric potential in the (Tv)-plane is vertically still more asymmetric than
in the free surface case, with stronger gradients in the upper part. In the central
region (outside the parallel layers), a gradient of potential may be observed as in
the free surface case, which could be responsible for an extra damping in the upper
part compared to the two-dimensional case where only the directly induced electric
current need be considered. But here, due to the strong velocities at the surface, this
effect is not visible. The overall characteristics of the electric current density reflect
those of the melt flow: in a given plane of constant x, one asymmetric current loop is
found with much larger current density concentrated at the top, while the very weak
returning current fills the remaining area. This current loop induces damping of the
flow, but also creates overvelocities in the parallel layers.

We next consider results for the Bx case. The magnetic field has a weaker effect
on the velocity than in the Bz case. Nonetheless, the plots of the velocity vectors in
planes of constant x presented in figure 18 reveal effects of a magnetic field on the
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x = 0.25 x = 2.0 x = 3.75

Figure 18. Velocity vectors in three planes of constant x for the thermocapillary flow and the Bx
case at Re = 2× 103 and Ha = 200. The planes are located at x = 0.25, 2 and 3.75.

flow structure and predominantly three-dimensional behaviour. As in the Bz case one
observes a large surface velocity, inducing a thin viscous layer, and a weak return
flow which occupies a large part of the depth. But no overvelocities appear at the
surface up to the largest value of Hartmann numbers, Ha = 250, we investigated. For
large Ha (figure 18), a reverse circulation inside the returning flow becomes visible.
This reverse circulation occurs despite the fact that no magnetic force acts in the
longitudinal direction. In fact, here, due to the special structure of the flow, the directly
induced electric current is mainly created by the vertical velocity and is strongest just
below the upper surface. The electric potential is vertically asymmetric with stronger
gradients in the upper part. The resulting electric current circulates mainly in planes
of constant x and it consists of two superposed counter-rotating loops, a small one at
the top and a large one in the core, which, as already described, generate longitudinal
pressure gradients. In the upper part of the cavity the force resulting from the
longitudinal pressure gradient reduces the action of the thermocapillary force while,
in the lower part of the cavity, it induces the weak reverse flow already mentioned.
Note that the size and the intensity of this zone of reversed flow is seen to increase as
Ha increases. The behaviour of the vertical velocity in the (Lh)-plane as a function
of Ha is found to be qualitatively similar to that observed for the free surface cavity
in the Bx case.

From figure 18, it is also clear that the surface velocity is no longer monotonic
in x. It displays a U-shaped transverse profile near the hot wall, and a parabolic
(Poiseuille) transverse profile at mid-length in the cavity. Finally, near the vertical
cold wall, it again takes on the U-shaped form. Note that this particular feature of
the surface velocity, namely the appearance of a parabolic velocity profile, is not
obtained in the case without a magnetic field when Re = 2000 but only at lower
Reynolds numbers, e.g. Re = 500. In fact, this parabolic profile is only observable if
the flow velocities are small enough that the distance for development which increases
with Reynolds number, is smaller than the length of the cavity. Another interesting
aspect of such flows is the fact that the intensity of the return flow increases with
longitudinal distance. This aspect is made clearer by the plot of the horizontal velocity
component profiles as a function of the z-coordinate at y = 0.5 and 0.85 and various
x-locations in figure 19. This behaviour is consistent with the observed particle tracks
(see figure 20) which show that as the flow progresses in the x-direction, secondary
flows are fed by the surface layer to rejoin the overall returning flow; thus the velocity
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Figure 19. Thermocapillary steady flow solution for the Bx case at Re = 2 × 103 and Ha = 200.
The horizontal velocity profiles along z are given at various longitudinal locations (x = 0.5, 1, 1.5
and 2) and for two transversal locations: (a) y = 0.5 and (b) y = 0.85.

is progressively enhanced. However, at Ha = 200, in the vicinity of the (Lv)-plane we
observe that the reverse flow becomes strong enough to modify the overall circulation
and induces a new recirculation zone in the lower part of the cavity.

In order to assess the effects of the constant magnetic field upon the intensity of the
flow, in figure 21 we plot the maxima of horizontal and vertical velocity as a function
of Hartmann number. These curves exhibit changes in the response of the convective
flow when Ha > 10 for the Bz case, while for the Bx case such changes occur when
Ha > 30 and Ha > 100 for wmax and umax respectively. From the figure we see that
the behaviour of umax and wmax depends on the orientation of the magnetic field. In
fact, umax varies as Ha−1/2 and Ha−1 whereas wmax varies as Ha−3/4 and Ha−3/2, when
the magnetic field is oriented along the positive x- and z-directions respectively.
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(a)

(b)

Figure 20. Plots of the particles tracks for the thermocapillary steady flow solutions and the Bx
case for Re = 2× 103: (a) Ha = 0; (b) Ha = 200.
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Figure 21. Plots of the maxima of the two main components of the velocity (umax and wmax), for
the thermocapillary flow case as a function of the Hartmann number for the Bz and the Bx cases.

5. Concluding remarks
This study of the effects of constant magnetic fields on flows of an electrically

conducting melt has shown the occurrence of several important phenomena. One
such finding is that increasing the strength of the magnetic field causes the solution to
evolve progressively both in form and in magnitude: the absolute value of the velocity
is markedly reduced and the overall distribution of the velocity is greatly modified.
The numerical calculations further suggest that in the changing flow structure with
increasing Ha, there are marked differences amongst the three configurations we
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investigated, namely a confined cavity, a cavity with a zero-stress boundary on the
top, and a cavity subjected to thermocapillary effects on the top.

Furthermore, the orientation of the applied magnetic field is found to have an
important influence on the flow evolution. When the magnetic field is applied vertically
(the Bz case) the general behaviour of the melt motion may be summarized as follows:
for relatively small Ha, magnetic effects are primarily associated with braking of the
average flow in the melt and, for sufficiently large Ha, the flow becomes unidirectional
over a large part of the cavity with a quiescent core region surrounded at the bottom
(and also at the top for the confined cavity) by Hartmann boundary layers and by
parallel layers at the vertical sidewalls. In these parallel layers, peaks of overvelocity
are observed which mainly concern the longitudinal velocity but also affect the vertical
velocity. The boundary layer regime is attained for Ha > 10, a value independent of
the boundary condition at the top. In the free surface case, strong effects of magnetic
damping result in the inversion of the flow in the upper part of the cavity.

When the magnetic field is applied in the longitudinal direction (the Bx case) we
also observe a decrease in the flow velocity with the creation of Hartmann and
parallel layers, but these effects are established for larger Hartmann values, Ha > 50.
In contrast with the Bz case, the Hartmann layers develop along the endwalls and
the effect of overvelocity in the parallel layers mainly concerns the vertical velocity
component. The vertical velocity is also non-zero throughout the cavity resulting in
continuous transfer between the longitudinal upper and lower flows and preventing
the establishment of a unidirectional flow. In addition, when Ha becomes large enough
(Ha > 200), reverse flows become clearly visible in the core region of the cavity. In
the thermocapillary-driven flow case, the appearance of this reverse flow leads to the
splitting of the unicellular flow into two superposed cells.

The results of the analyses of the electric current effects, in both the Bx and Bz
cases, are qualitatively similar and they show that at large values of Ha the behaviour
of the flow is governed by the electric current distribution. This electric current has
two components: the potential one, and the directly induced one which is principally
responsible for the braking observed in the core region (it is the only contribution
in the two-dimensional models). The electric potential maintains closed current lines,
leading to a reduction of the damping in the parallel layers where the resulting current
is almost parallel to the applied magnetic field. More subtle effects of current can
give flow inversions in the core zones: in the Bz case, these inversions result from
extra damping due to potential effects (similar to the electromagnetic pumping effect)
with strong potential gradients in the parallel layers on either side of the core zone;
in the Bx case, they correspond to pressure effects due to current loops perpendicular
to the applied magnetic field. Furthermore, independently of the orientation of the
applied magnetic field, the strongest electric current circulation occurs in the planes
of constant x. This behaviour was to be expected in the Bz case. In the Bx case,
it seems that enforcement of closure of current lines by potential effects occurs
principally in transverse planes rather than in longitudinal planes because, owing to
the smaller transverse cavity dimension, transverse potential gradients are stronger
than longitudinal ones.

Comparison of the maxima of the velocity indicates that the magnetic damping
is more efficient in the Bz case. This could be due to the fact that, in this case, the
magnetic force v×B×B acts over larger areas and applies to the longitudinal velocity
component, which is dominant.

Some aspects of our results in the Bz case, such as the presence of overvelocities in
the parallel layers, have already been observed using the unidirectional flow hypothesis



82 H. Ben Hadid and D. Henry

(valid for Ha � 1) in two-dimensional simulations in transverse planes (Moreau &
Ben Salah 1993, personal communication; Bojarevics 1995). Here, we have only
discussed flows in cavities whose walls are perfect electric insulators. The opposite
limit in which the walls are perfect electric conductors has also been investigated
by Moreau & Ben Salah (1993, personal communication) and their findings show a
stronger damping effect of the magnetic field.
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Spatiales” (Division Microgravité Fondamentale et Appliquée). Computations were
carried out on a Cray YMP C98 computer, with the support from the CNRS through
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